Invention of the plane geometrical formulae - Part I

Mr. Satish M. Kaple

Asst. Teacher Mahatma Phule High School, Kherda Jalgaon (Jamod) - 443402 District Buldana, Maharashtra (India)

ABSTRACT: In this paper, I have invented the formulae of the height of the triangle. My findings are based on Pythagoras theorem.

I. INTRODUCTION

A mathematician called Heron invented the formula for finding the area of a triangle, when all the three sides are known. From the three sides of a triangle, I have also invented the two new formulae of the height of the triangle by using pythagoras Theorem . Similarly, I have developed these new formulae for finding the area of a triangle.

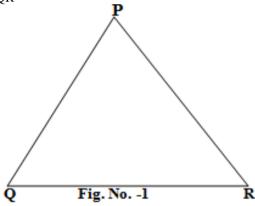
When all the three sides are known, only we can find out the area of a triangle by using Heron's formula. By my invention, it became not only possible to find the height of a triangle but also possible for finding the area of a triangle.

I used pythagoras theorem with geometrical figures and algebric equations for the invention of the two new formulae of the height of the triangle. I Proved it by using geometrical formulae & figures, 50 and more examples, 50 verifications (proofs).

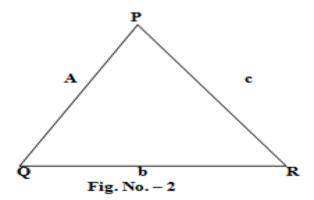
Here myself is giving you the summary of the research of the plane geometrical formulae- Part I

II. METHOD

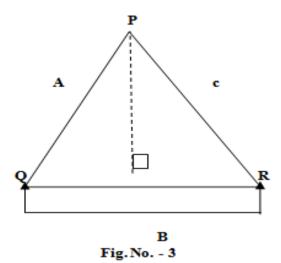
First taking a scalene triangle PQR



Now taking a, b & c for the lengths of three sides of \triangle PQR.



Draw perpendicular PM on QR.



In \triangle PQR given above,

 \triangle PQR is a scalene triangle and is also an acute angled triangle. PM is perpendicular to QR. Two another right angled triangles are formed by taking the height PM, on the side QR from the vertex P. These two right angled triangles are \triangle PMQ and \triangle PMR. Due to the perpendicular drawn on the side QR, Side QR is divided into two another segment, namely, Seg MQ and Seg MR. QR is the base and PM is the height.

Here, a,b and c are the lengths of three sides of \triangle PQR. Similarly, x and y are the lengths of Seg MQ and Seg MR.

Taking from the above figure,

$$PQ = a$$
, $QR = b$, $PR = c$

and height, PM = h

But QR is the base, QR = b

$$MQ = x$$
 and $MR = y$

$$QR = MQ + MR$$

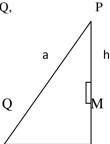
Putting the value in above eqn.

Hence,
$$QR = x + y$$

$$b = x + y$$

 $x+y = b$ ----- (1)

Step (1) Taking first right angled \triangle PMQ,



Q Х

Fig. No.- 4

In \triangle PMQ,

Seg PM and Seg MQ are sides forming the right angle. Seg PQ is the hypotenuse and

$$\angle PMQ = 90^{\circ}$$

Let,

$$PQ = a$$
, $MQ = x$ and

height,
$$PM = h$$

According to Pythagoras theorem,

(Hypotenuse) = (One side forming the right angle) +

(Second side forming the right angle)

In short,

(Hypotenuse)
2
 = (One side) 2 + (Second side)

$$PQ^{2} = PM^{2} + MQ^{2}$$

$$a^{2} = h^{2} + x$$

$$h^{2} + x^{2} = a^{2}$$

$$h^{2} = a^{2} - x^{2} - \dots (2)$$

Step (2) Similarly,

Let us now a right angled triangle $\triangle PMR$

c

h

R Fig. No.- 5

In \triangle PMR,

Seg PM and Seg MR are sides forming the right angle. Seg PR is the hypotenuse.

Let, PR = c, MR = y and

height, PM = h and m
$$\angle$$
PMR = 90°

height, PM = h and m
$$\angle$$
PMR = 90
According to Pythagoras theorem,
(Hypotenuse) =(One side) +(Second side)

$$PR = PM + MR$$

$$c = h + y$$

$$c = h + y$$

$$h + y = c$$

$$h = c - y$$

$$a - x = c - y$$

$$a^2 - c^2 = x^2 - y^2$$

$$a^{2} - x^{2} = c^{2} - y^{2}$$

 $a^{2} - c^{2} = x^{2} - y^{2}$
 $x^{2} - y^{2} = a^{2} - c^{2}$

By using the formula for factorization, $a^2 - b^2 = (a + b) (a - b)$

$$(x + y) (x - y) = a^2 - c^2$$

$$(x + y) (x - y) = a^2 - c^2$$

But, $x + y = b$ from eqn. (1)
 $b \times (x - y) = a^2 - c^2$

$$b \times (x - y) = a^2 - c^2$$

Now, adding the equations (1) and (4)

$$x + y = b$$

 $+ x - y = a^{2} - c^{2}$
 b
 $2x + 0 = b + a^{2} - c^{2}$
 b

Solving R.H.S. by using cross multiplication

$$2x = b + a^2 - c^2$$

$$2x = b \times b + (a^{2}-c^{2}) \times 1$$

$$2x = b^{2} + a^{2}-c^{2}$$

$$x = a^{2} + b^{2}-c^{2} \times 1$$

$$x = a^{2} + b^{2}-c^{2}$$

$$x = a^{2} + b^{2}-c^{2}$$

Substituting the value of x in equation (1)

$$x+y = b$$

$$x^{2} + b^{2} - c^{2}$$

$$y = b - a^{2} + b^{2} - c^{2}$$

$$y = b - a^{2} + b^{2} - c^{2}$$

$$y = b - a^{2} + b^{2} - c^{2}$$

Solving R.H.S. by using cross multiplication.

y =
$$b \times 2b - (a^2 + b^2 - c^2) \times 1$$

 $1 \times 2b$
y = $2b^2 - (a^2 + b^2 - c^2)$
 $2b$
y = $2b^2 - a^2 - b^2 + c^2$
y = $-a^2 + b^2 + c^2$
 $2b$

The obtained values of x and y are as follow.

$$x = a^{2} + b^{2} - c^{2}$$
 $y = -a^{2} + b^{2} + c^{2}$
and

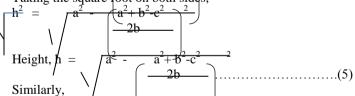
Substituting the value of x in equation (2).

$$h^{2} = a^{2} - x^{2}$$

$$h^{2} = a^{2} - a^{2} + b^{2} c^{2}$$

$$2b c$$

Taking the square root on both sides,



Substituting the value of y in equation (3) $h^2 = c^2 - y^2$

$$h^2 = c^2 - a^2 + b^2 + c^2$$

Taking the square root on both sides.

$$\frac{h^{2}}{h^{2}} = \sqrt{\frac{c^{2} - a^{2} + b^{2} + c^{2}}{2b}}$$

$$\frac{h^{2}}{h^{2}} = \sqrt{\frac{c^{2} - a^{2} + b^{2} + c^{2}}{2b}}$$

Height,h =
$$\sqrt{\frac{c^2 - (-a^2 + b^2 + c^2)^2}{2b}}$$
(6)

These above two new formulae of the height of a triangle are obtained.

By using the above two new formulae of the height of the triangle, new formulae of the area of a triangle are developed. These formulae of the area of a triangle are as follows:-

... Area of
$$\triangle$$
 PQR = A (\triangle PQR) ------ (A stands for area)

= 1 × Base × Height

-2

= 1 × QR × PM

------ (b for base and h for height)

From equation (5), we get

... Area of
$$\triangle$$
 PQR = 1 × b × $a^2 - \frac{a^2 + b^2 - c^2}{2b}$

OR

$$\therefore$$
 Area of \triangle PQR = A (\triangle PQR)

$$= 1 \times Base \times Height$$

$$= 1 \times QR \times PM$$

$$= 1 \times b \times h$$

From equation (6), we get

Area of
$$\triangle$$
 PQR = A (\triangle PQR) = 1 × b × $\sqrt{c^2 - (-a^2 + b^2 + c^2)^2}$

From above formulae, we can find out the area of any type of triangle. Out of two formulae, anyone formula can use to find the area of triangle.

For example:-

Now consider the following examples:-

Ex. (1) If the sides of a triangle are 17 m. 25 m and 26 m, find its area.

Here,

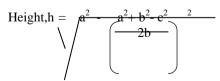
 \triangle DEF is a scalene triangle

$$l(DE) = a = 17 \text{ m}$$

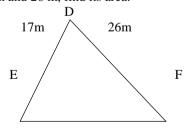
$$l(EF) = Base, b = 25 m$$

$$l(DF) = c = 26 \text{ m}$$

By using The New Formula No (1)



Area of
$$\triangle$$
 DEF = A (\triangle DEF)
= 1 × Base × Height
 $\frac{2}{2}$
= 1 × b × h



$$= 1 \times b \times a^{2} - a^{2} + b^{2} - e^{2} - \frac{2}{2}$$

$$= 1 \times 25 \times 17^{2} - 17^{2} + 25^{2} - (26)^{2} - \frac{2}{2} \times 25$$

$$= 25 \times 17^{2} - 289 + 625 - 676 - \frac{2}{2}$$

$$= 25 \times 17^{2} - 289 + 625 - 676 - \frac{2}{2}$$

$$= 25 \times 17^{2} - 238 - \frac{2}{50}$$
The simplest form of 238 is $119 - \frac{2}{50} - \frac{2}{25}$

By using the formula for factorization, $a^2 - b^2 = (a - b) (a + b)$

$$= 25 \times \sqrt{\frac{425 - 119}{25}} \times \sqrt{\frac{425 + 119}{25}}$$

$$= 25 \times \sqrt{\frac{306 \times 544}{25}}$$

$$= 25 \times \sqrt{\frac{306 \times 544}{25}}$$

$$= 25 \times \sqrt{\frac{166464}{25}}$$
The square root of $\sqrt{\frac{166464}{25}}$

$$= 25 \times 408$$

The simplest form of $\begin{array}{ccc}
408 & \text{is } 204 \\
\hline
-2 & \end{array}$

= 204 sq. m

... Area of \triangle DEF = 204 sq.m.

By using the new formula No (2)

By using the formula of Heron's

Perimeter of
$$\triangle$$
 DEF = $a + b + c$
= $17+25+26$
= 68 m

Semiperimeter of \triangle DEF,

$$S = a + b + c$$

 $S = 68 = 34 \text{ m}.$

Area of
$$\triangle$$
 DEF = A (\triangle DEF)

Area of
$$\triangle$$
 DEF = A (\triangle DEF)
= $\sqrt{\frac{s(s-a)(s-b)(s-c)}{34 \times (34-17)(34-25)(34-26)}}$
= $\sqrt{\frac{34 \times 17 \times 9 \times 8}{2 \times 17 \times 17 \times 9 \times 8}}$
= $\sqrt{\frac{17 \times 17}{289} \times 9 \times 16}$
= $\sqrt{\frac{289 \times 9 \times 16}{289}} \times \sqrt{\frac{9}{34 \times 16}}$

The square root of 289 is 17, The square root of 9 is 3 and

The square root of 16 is 4 respectively

$$= 17 \times 3 \times 4$$

= 204.

 \therefore Area of \triangle DEF = 204 sq .m.

Ex. (2) In \triangle ABC, ℓ (AB) = 11 cm,

$$l(BC) = 4 \text{ cm} \text{ and } l(AC) = 7 \text{ cm}$$

Find the area of \triangle ABC.

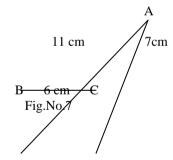
 $\operatorname{P} \triangle ABC$ is a scalene triangle

Here,

$$l(AB) = a = 11 \text{ cm}$$

$$l(BC) = Base, b = 6 cm$$

$$l(AC) = c = 7 \text{ cm}$$



By using The New Formula No. (1)

Area of \triangle ABC = A (\triangle ABC)

$$= 1 \times Base \times Height$$

$$= 1 \times b \times h$$

$$= 2$$

$$= 1 \times b \times a^{2} - a^{2} + b^{2} - c^{2}$$

$$= 1 \times b \times 11^{2} - 2b$$

$$= 1 \times b \times 11^{2} - 2b$$

$$= 1 \times 6^{2} - (7)^{2} - 2 \times 6$$

$$= \frac{6}{2} \times 121 - \frac{121 + 36 - 49}{12}$$

$$= 3 \times \sqrt{\frac{121 - \frac{108}{-12}}{\frac{12}{2}}}$$

The simplest form of $\begin{array}{c} 108 \\ \hline 12 \end{array}$ is 9

$$= 3 \times \sqrt{121 - (9)^{2}}$$

$$= 3 \times \sqrt{40}$$

$$= 3 \times \sqrt{4 \times 10}$$

$$= 3 \times \sqrt{4 \times 10}$$

$$= 3 \times \sqrt{4 \times 10}$$

$$= 3 \times 2 \times \sqrt{40}$$

$$= 4 \times 2 \times \sqrt{40}$$

$$= 6 \times 10^{-10} \text{ sq.cm}$$

$$\therefore \text{Area of } \triangle \text{ ABC } = 6 \times 10^{-10} \text{ sq.cm}$$

By using The New Formula No. (2)

Area of
$$\triangle$$
 ABC = A (\triangle ABC)
= 1 × Base × Height
-2-
= 1 × b × h

The square of (-3) is 9
$$= 3 \times \sqrt{49-9}$$

$$= 3 \times \sqrt{40}$$

$$= 3 \times \sqrt{4 \times 10} = 3 \times \sqrt{4 \times 10}$$
The square root of 4 is 2.
$$= 3 \times 2 \times \sqrt{10}$$

$$= 6 \times 10 \text{ sq.cm}$$
Area of \triangle ABC = 6 \tag{10} sq.cm

Verification: -

EX (2) In \triangle ABC, /(AB) = 11 cm,
/ (BC) = 6 cm and / (AC) = 7 cm

Find the area of \triangle ABC.

By using the formula of Heron's

Perimeter of \triangle ABC = a + b + c

Semiperimeter of \triangle ABC,

$$S = \frac{a+b+c}{2}$$

$$S = \frac{11+6+7}{2}$$

$$S = \frac{24}{2} = 12 \text{ cm.}$$

Area of \triangle ABC = A (\triangle ABC)

=
$$\sqrt{s(s-a)(s-b)(s-c)}$$

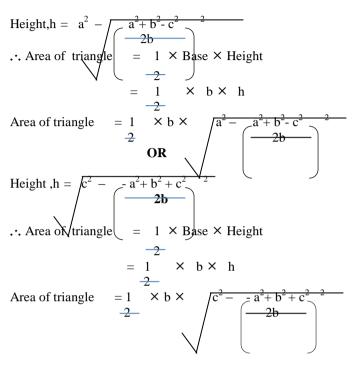
= $\sqrt{12 \times (12-11)(12-6)(12-7)}$
= $\sqrt{12 \times 1 \times 6 \times 5}$
= $\sqrt{6 \times 2 \times 6 \times 5}$
= $\sqrt{6 \times 6) \times (2 \times 5)}$
= $\sqrt{36 \times 10}$
= $\sqrt{36} \times \sqrt{10}$ (The square root of 36 is 6.)
= $6 \times \sqrt{10}$ sq.cm

III. EXPLANATION

We observe the above solved examples and their verifications, it is seen that the values of solved examples and the values of their verifications are equal.

Hence, The New Formulae No. (1) and (2) are proved.

Conclusions:-



From above two new formulae, we can find out the height & area of any types of triangles.

These new formulae are useful in educational curriculum, building and bridge construction and department of land records.

These two new formulae are also useful to find the area of a triangular plots of lands, fields, farms, forests etc. by drawing their maps.

REFERENCES

[1]. Geometry concepts & pythagoras theorem.